Cell-Targeted Optogenetics and Electrical Microstimulation Reveal the Primate Koniocellular Projection to Supra-granular Visual Cortex

نویسندگان

  • Carsten Klein
  • Henry C. Evrard
  • Katharine A. Shapcott
  • Silke Haverkamp
  • Nikos K. Logothetis
  • Michael C. Schmid
چکیده

Electrical microstimulation and more recently optogenetics are widely used to map large-scale brain circuits. However, the neuronal specificity achieved with both methods is not well understood. Here we compare cell-targeted optogenetics and electrical microstimulation in the macaque monkey brain to functionally map the koniocellular lateral geniculate nucleus (LGN) projection to primary visual cortex (V1). Selective activation of the LGN konio neurons with CamK-specific optogenetics caused selective electrical current inflow in the supra-granular layers of V1. Electrical microstimulation targeted at LGN konio layers revealed the same supra-granular V1 activation pattern as the one elicited by optogenetics. Taken together, these findings establish a selective koniocellular LGN influence on V1 supra-granular layers, and they indicate comparable capacities of both stimulation methods to isolate thalamo-cortical circuits in the primate brain.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Optogenetics Advances in Primate Visual Pathway

In this issue of Neuron, Klein et al. (2016) used cell-type-specific optogenetics and electrical microstimulation to characterize the koniocellular geniculocortical projections in nonhuman primates. Their work offers a powerful platform for refining our understanding of the mechanisms of visual information processing in the lateral geniculate nucleus and primary visual cortex.

متن کامل

Optogenetic and Electrical Microstimulation Systematically Bias Visuospatial Choice in Primates

Optogenetics is a recently developed method in which neurons are genetically modified to express membrane proteins sensitive to light, enabling precisely targeted control of neural activity [1-3]. The temporal and spatial precision afforded by neural stimulation by light holds promise as a powerful alternative to current methods of neural control, which rely predominantly on electrical and phar...

متن کامل

Identification of a pathway from the retina to koniocellular layer K1 in the lateral geniculate nucleus of marmoset.

Three well characterized pathways in primate vision (midget-parvocellular, parasol-magnocellular, bistratified-koniocellular) have been traced from the first synapse in the retina, through the visual thalamus (lateral geniculate nucleus, LGN), to the visual cortex. Here we identify a pathway from the first synapse in the retina to koniocellular layer K1 in marmoset monkeys (Callithrix jacchus)....

متن کامل

Towards a circuit mechanism for movement tuning in motor cortex

The firing rates of neurons in primate motor cortex have been related to multiple parameters of voluntary movement. This finding has been corroborated by stimulation-based studies that have mapped complex movements in rodent and primate motor cortex. However, it has been difficult to link the movement tuning of a neuron with its role within the cortical microcircuit. In sensory cortex, neuronal...

متن کامل

Strategies for targeting primate neural circuits with viral vectors.

Understanding how the brain works requires understanding how different types of neurons contribute to circuit function and organism behavior. Progress on this front has been accelerated by optogenetics and chemogenetics, which provide an unprecedented level of control over distinct neuronal types in small animals. In primates, however, targeting specific types of neurons with these tools remain...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Neuron

دوره 90  شماره 

صفحات  -

تاریخ انتشار 2016